929 research outputs found

    The dynamical status of ZwCl 2341.1+0000: a very elongated galaxy structure with a complex radio emission

    Full text link
    We study the dynamical status of the galaxy system ZwCl 2341.1+0000, a filamentary multi-Mpc galaxy structure associated with a complex diffuse radio emission. Our analysis is mainly based on new spectroscopic data for 128 galaxies acquired at the TNG telescope. We also use optical data available in the SDSS and X-ray data from the Chandra archive. We select 101 cluster member galaxies and compute the cluster redshift ~0.2693 and the global LOS velocity dispersion ~1000 km/s. Our optical analysis agrees with the presence of at least three, likely four or more, optical subclusters causing the SSE-NNW elongation of the galaxy distribution and a significant velocity gradient in the S-N direction. In particular, we detect an important low-velocity subclump in the southern region, roughly coincident with the brightest peak of the diffuse radio emission but with a clear offset between the optical and radio peaks. We also detect one (or two) optical subcluster(s) at north, in correspondence with the second brightest radio emission, and another one in the central cluster region, where a third diffuse radio source has been recently detected. A more refined analysis involving the study of the 2D galaxy distribution suggests an even more complex structure. As for the X-ray analysis, we confirm the SSE-NNW elongation of the intracluster medium and detect four significant peaks. The X-ray emission is strongly asymmetric and offsetted with respect to the galaxy distribution, thus suggesting a merger caught in the phase of post-core-core passage. Our findings support two possible hypotheses for the nature of the diffuse radio emission of ZwCl 2341.1+0000: a 2 relics+halo scenario or diffuse emission associated with the infall and merging of several galaxy groups during the first phase of the cluster formation.Comment: 14 pages, 14 figures, 4 tables; MNRAS in pres

    The puzzling merging cluster Abell 1914: new insights from the kinematics of member galaxies

    Full text link
    We analyze the dynamical state of Abell 1914, a merging cluster hosting a radio halo, quite unusual for its structure. Our study considers spectroscopic data for 119 galaxies obtained with the Italian Telescopio Nazionale Galileo. We select 89 cluster members from spatial and velocity distributions. We also use photometry Canada-France-Hawaii Telescope archives. We compute the mean cluster redshift, =0.168, and the velocity dispersion which shows a high value, sigma_v=1210_{-110}^{+125} km/s. From the 2D analysis we find that Abell 1914 has a NE-SW elongated structure with two galaxy clumps, that mostly merge in the plane of the sky. Our best, but very uncertain estimate of the velocity dispersion of the main system is sigma_v~1000 km/s. We estimate a virial mass M_sys=1.4--2.6 10^{15} h_{70}^{-1} Msun for the whole system. We study the merger through a simple two-body model and find that data are consistent with a bound, outgoing substructure observed just after the core crossing. By studying the 2D distribution of the red galaxies, photometrically selected, we show that Abell 1914 is contained in a rich large scale structure, with two close companion galaxy systems, known to be at z~0.17. The system at SW supports the idea that the cluster is accreting groups from a filament aligned in the NE-SW direction, while that at NW suggests a second direction of the accretion NW-SE. We conclude that Abell 1914 well fits among typical clusters with radio halos. We argue that the unusual radio emission is connected to the complex cluster accretion and suggest that Abell 1914 resembles the well-known nearby merging cluster Abell 754 for its particular observed phenomenology.Comment: 14 pages, 10 figures, 2 table

    Internal dynamics of the galaxy cluster Abell 959

    Full text link
    The connection of cluster mergers with the presence of extended, diffuse radio sources in galaxy clusters is still being debated. In this paper we aim to obtain new insights into the internal dynamics of Abell 959, showing evidence of a diffuse radio source, analyzing velocities and positions of member galaxies. Our analysis is based on redshift data for 107 galaxies in the cluster field acquired at the Telescopio Nazionale Galileo. We also use photometric data from the Sloan Digital Sky Survey (Data Release 6). We combine galaxy velocities and positions to select 81 galaxies recognized as cluster members and determine global dynamical properties. We analyze the cluster searching for substructures by using several statistical methods. We also study the 2D galaxy distribution in the field of the cluster. We compare our results with those from X-ray and gravitational lensing analyses. We estimate a cluster redshift of z=0.2883 +/- 0.0004. We detect an NE high velocity group at 5' from the cluster center with a relative line--of--sight (LOS) velocity of ~ +1900 km/s with respect to the main system. We also detect a central, dense structure elongated along the SE--NW direction likely connected with the two dominant galaxies and their surrounding cores. This elongated central structure is probably the trace of an old cluster merger. The LOS velocity dispersion of galaxies is very high (1025 (-75/+104) km/s). The virial mass is M(<R=1.48 Mpc)= 1.15 (-0.19/+0.25) Msun. Our results suggest that this cluster is forming along two main directions of mass accretion and show the typical characteristics of radio clusters; i.e., it is very massive and shows a young dynamical state. However, deeper radio observations are needed to clarify the nature of the diffuse radio emission in Abell 959.Comment: 12 pages, 13 figures, 3 tables. Accepted for publication on Astronomy and Astrophysic

    The structure of Abell 1351: a bimodal galaxy cluster with peculiar diffuse radio emission

    Full text link
    We aim to review the internal structure and dynamics of the Abell 1351 cluster, shown to host a radio halo with a quite irregular shape. Our analysis is based on radial velocity data for 135 galaxies obtained at the Telescopio Nazionale Galileo. We combine galaxy velocities and positions to select 95 cluster galaxy members and analyse the internal dynamics of the whole cluster. We also examine X-ray data retrieved from Chandra and XMM archives. We measure the cluster redshift, =0.325, the line-of-sight (LOS) velocity dispersion, \sigma_v~1500 km/s, and the X-ray temperature, kT~9 keV. From both X-ray and optical data independently, we estimate a large cluster mass, in the 1--4 101510^{15} M_\odot range. We attribute the extremely high value of \sigma_v to the bimodality in the velocity distribution. We find evidence of a significant velocity gradient and optical 3D substructure. The X-ray analysis also shows many features in favour of a complex cluster structure, probably supporting an ongoing merger of substructures in Abell 1351. The observational scenario agrees with the presence of two main subclusters in the northern region, each with its brightest galaxy (BCG1 and BCG2), detected as the two most important X-ray substructures with a rest-frame LOS velocity difference of \Delta v~2500 km/s (in the rest frame) and probably being in large part aligned with the LOS. We conclude that Abell 1351 is a massive merging cluster. The details of the cluster structure allow us to interpret the quite asymmetric radio halo as a `normal' halo plus a southern relic, strongly supporting a previous suggestion based only on inspection of radio and preliminary X-ray data.Comment: 13 pages, 13 figures, 1 tabl

    The dynamical state of RXCJ1230.7+3439: a multi-substructured merging galaxy cluster

    Full text link
    We analyse the kinematical and dynamical state of the galaxy cluster RXCJ1230.7+3439, at z=0.332, using 93 new spectroscopic redshifts of galaxies acquired at the 3.6m TNG telescope and from SDSS DR16 public data. We find that RXCJ1230 appears as a clearly isolated peak in the redshift space, with a global line-of-sight velocity dispersion of 1004122+1471004_{-122}^{+147} km s1^{-1}, and showing a very complex structure with the presence of three subclusters. Our analyses confirm that the three substructures detected are in a pre-merger phase, where the main interaction takes place with the south-west subclump. We compute a velocity dispersion of σv1000\sigma_\textrm{v} \sim 1000 and σv800\sigma_\textrm{v} \sim 800 km s1^{-1} for the main cluster and the south-west substructure, respectively. The central main body and south-west substructure differ by 870\sim 870 km s1^{-1} in the LOS velocity. From these data, we estimate a dynamical mass of M200=9.0±1.5×1014M_{200}= 9.0 \pm 1.5 \times 10^{14} M_{\odot} and 4.4±3.3×10144.4 \pm 3.3 \times 10^{14} M_{\odot} for the RXCJ1230 main body and south-west clump, respectively, which reveals that the cluster will suffer a merging characterized by a 2:1 mass ratio impact. We solve a two-body problem for this interaction and find that the most likely solution suggests that the merging axis lies almost contained in the plane of the sky and the subcluster will fully interact in 0.3\sim0.3 Gyr. The comparison between the dynamical masses and those derived from X-ray data reveals a good agreement within errors (differences 15\sim 15\%), which suggests that the innermost regions (<r500<r_{500}) of the galaxy clumps are almost in hydrostatical equilibrium. To summarize, RXCJ1230 is a young but also massive cluster in a pre-merging phase accreeting other galaxy systems from its environment.Comment: To be published in A&

    Internal dynamics of the massive cluster Abell 697: a multiwavelength analysis

    Get PDF
    We conduct an intensive study of the rich, X-ray luminous, and hot galaxy cluster Abell 697 (at z=0.282), likely containing a diffuse radio emission, to determine its dynamical status. Our analysis is based on new spectroscopic data obtained at the TNG telescope for 93 galaxies and on new photometric data obtained at the INT telescope. We combine galaxy velocity and position information to select 68 cluster members, determine global dynamical properties, and detect possible substructures. The investigation of the dynamical status is also performed by using X-ray data stored in the Chandra archive. We compute the line-of-sight (LOS) velocity dispersion of galaxies, sigma_v=1334 km s^-1, in agreement with the high average X-ray temperature T_X=10.2 keV recovered from Chandra data. Assuming that the cluster is in dynamical equilibrium and mass follows the galaxy distribution, we find that A697 is a very massive cluster obtaining M(<R_max=0.75 Mpc h^-1)=9.5x10^14 solar masses h^-1 and M(<R_vir=3.85 Mpc h^-1)=4.5x10^15 solar masses h^-1 for the region well sampled by the spectroscopic data and for the entire virialized region, respectively. Further investigations find that A697 is not fully relaxed, as shown by the non Gaussianity of the velocity distribution, the elongation of the X-ray emission, and the presence of small-size substructures in the central region. Our results suggest that we are looking at a cluster undergone to a complex cluster merger occurring roughly mainly along the LOS, with a transverse component in the SSE-NNW direction. Our study supports the hypothesis of a relation between extended radio emission and merging phenomena

    Deep spectroscopic luminosity function of Abell 85: no evidence for a steep upturn of the faint-end slope

    Get PDF
    We present a new deep determination of the spectroscopic LF within the virial radius of the nearby and massive Abell\,85 (A85) cluster down to the dwarf regime (M* + 6) using VLT/VIMOS spectra for 2000\sim 2000 galaxies with mr21_r \leq 21 mag and μe,r24\langle \mu_{e,r} \rangle \leq 24 mag arcsec2^{-2}. The resulting LF from 438 cluster members is best modelled by a double Schechter function due to the presence of a statistically significant upturn at the faint-end. The amplitude of this upturn (αf=1.580.15+0.19\alpha_{f} = -1.58^{+0.19}_{-0.15}), however, is much smaller than that of the SDSS composite photometric cluster LF by Popesso et al. 2006, αf\alpha_{f} \sim -2. The faint-end slope of the LF in A85 is consistent, within the uncertainties, with that of the field. The red galaxy population dominates the LF at low luminosities, and is the main responsible for the upturn. The fact that the slopes of the spectroscopic LFs in the field and in a cluster as massive as A85 are similar suggests that the cluster environment does not play a major role in determining the abundance of low-mass galaxies.Comment: 6 pages, 4 figures, accepted at MNRAS lette

    The redshift and broad band spectral energy distribution of NRAO 150

    Full text link
    Context. NRAO 150 is one of the brightest radio and mm AGN sources on the northern sky. It has been revealed as an interesting source where to study extreme relativistic jet phenomena. However, its cosmological distance has not been reported so far, because of its optical faintness produced by strong Galactic extinction. Aims. Aiming at measuring the redshift of NRAO 150, and hence to start making possible quantitative studies from the source. Methods. We have conducted spectroscopic and photometric observations of the source in the near-IR, as well as in the optical. Results. All such observations have been successful in detecting the source. The near-IR spectroscopic observations reveal strong Hα\alpha and Hβ\beta emission lines from which the cosmological redshift of NRAO 150 (z=1.517±0.002z=1.517\pm0.002) has been determined for the first time. We classify the source as a flat-spectrum radio-loud quasar, for which we estimate a large super-massive black-hole mass 5×109M\sim5\times 10^{9} \mathrm{M_\odot}. After extinction correction, the new near-IR and optical data have revealed a high-luminosity continuum-emission excess in the optical (peaking at 2000\sim2000\,\AA, rest frame) that we attribute to thermal emission from the accretion disk for which we estimate a high accretion rate, 30\sim30\,% of the Eddington limit. Conclusions. Comparison of these source properties, and its broad-band spectral-energy distribution, with those of Fermi blazars allow us to predict that NRAO 150 is among the most powerful blazars, and hence a high luminosity -although not detected yet- γ\gamma-ray emitter.Comment: 8 pages, 4 figure

    The complex structure of Abell 2345: a galaxy cluster with non-symmetric radio relics

    Full text link
    We aim to obtain new insights into the internal dynamics of the cluster Abell 2345. This cluster exhibits two non-symmetric radio relics well studied through recent, deep radio data. Our analysis is based on redshift data for 125 galaxies acquired at the Telescopio Nazionale Galileo and on new photometric data acquired at the Isaac Newton Telescope. We also use ROSAT/HRI archival X-ray data. We combine galaxy velocities and positions to select 98 cluster galaxies and analyze the internal dynamics of the cluster. We estimate a mean redshift =0.1789 and a LOS velocity dispersion \sigma ~ 1070 km/s. The two-dimensional galaxy distribution reveals the presence of three significant peaks within a region of ~ 1 Mpc (the E, NW, and SW peaks). The spectroscopic catalog confirms the presence of these three clumps. The total mass of the cluster is very uncertain: M~ 2 10^15 solar masses. The E clump well coincides with the main mass peak as recovered from the weak gravitational lensing analysis and is off-set to the east from the BCG by ~ 1.3 arcmin. The ROSAT X-ray data also show a very complex structure, mainly elongated in the E-W direction, with two (likely three) peaks in the surface brightness distribution, which, however, are off-set from the position of the peaks in the galaxy density. The observed phenomenology agrees with the hypothesis that we are looking at a complex cluster merger occurring along two directions: a major merger along the ~ E-W direction (having a component along the LOS) and a minor merger in the western cluster regions along the ~ N-S direction, roughly parallel to the plane of the sky.Comment: 27 pages, 11 figures and 3 tables. Accepted for publication on Astronomy and Astrophysic
    corecore